Regularized RBF Networks for Hyperspectral Data Classification
نویسندگان
چکیده
In this communication, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dimensionality (128, 6, 3 and 2 number of bands) are tested for six labeled images containing six crop classes. Also, regularization, sparseness, and knowledge extraction are paid attention. Several conclusions are drawn: (1) all models offer similar accuracy but SVM and ABR yield slightly better results than RBFNN; (2) results indicate that ABR are less affected by the curse of dimensionality and has identified efficiently the presence of noisy bands; (3) we find that regularization is a useful method to work with noisy data distributions; and (4) some physical consequences are extracted from the trained models. Finally, this preliminary work lead us to think of kernel-based machines as efficient and robust methods for hyperspectral data classification.
منابع مشابه
تحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملApplying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and mu...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملA Comparison of Gaussian Based ANNs for the Classification of Multidimensional Hyperspectral Signals
This paper is concerned with the comparison of three types of Gaussian based Artificial Neural Networks in the very high dimensionality classification problems found in hyperspectral signal processing. In particular, they have been compared for the spectral unmixing problem given the fact that the requirements for this type of classification are very different from other realms in two aspects: ...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کامل